FINAL: ALGEBRA I

Date: 9th September 2025

The Total points is 110 and the maximum you can score is 100 points.

- (1) (4+11=15 points) Let G be a set, $e \in G$ and * be a binary operator on G. When is (G, *, e) called a group? Let $f : \mathbb{N} \to \mathbb{Z}$ be the bijective function given by f(m) = m/2 if m is even and f(m) = (1-m)/2 if m is odd. Define the binary operator on \mathbb{N} as follows: For $a, b \in \mathbb{N}$, $a * b = f^{-1}(f(a) + f(b))$. Show that $(\mathbb{N}, *, 1)$ is an abelian group.
- (2) (6+6+6+6=24 points) Prove or disprove
 - (a) The groups $(\mathbb{C}, +)$ and $(\mathbb{R}, +)$ are isomorphic.
 - (b) Let G be a group. If x and y are elements of finite order then xy is of finite order.
 - (c) Let G and H be groups. Then $Z(G \times H) = Z(G) \times Z(H)$ where Z(G) denotes the center of G.
 - (d) Let G be a group, $H \subseteq G$ and $K \subseteq H$ then $K \subseteq G$.
- (3) (12 points) Find all group homomorphisms from $(\mathbb{Z}/12\mathbb{Z}, +)$ to D_{20} .
- (4) (10 points) Compute all the conjugacy classes of the dihedral group D_{10} of order 10.
- (5) (8+4=12 points) Show that the group \mathbb{R}/\mathbb{Z} is isomorphic to $(\{z \in \mathbb{C} : |z| = 1\})$. Which elements are of finite order in $(\{z \in \mathbb{C} : |z| = 1\})$ and \mathbb{Q}/\mathbb{Z} ?
- (6) (3+14=17 points) Define a simple group. Show that a group of order 90 is not simple.
- (7) (4+4+12=20 points) Let G be a group and A be a set. What does it mean to say that G acts on A? When is this action called transitive and when is it called doubly transitive? Show that the natural action of A_n on the set $\{1,2,\ldots,n\}$ given by $\sigma \cdot i = \sigma(i)$ for $\sigma \in A_n$ and $1 \le i \le n$ is transitive for $n \ge 3$ and doubly transitive for $n \ge 4$.